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Propagation Along a Coaxial Cable
with a Helical Shield

DAVID A. HILL, SENIOR MEMBER, IEEE, AND JAMES R. WAIT, FELLOW, IEEE

Abstmet-A leaky coaxiaf cable k modefkd by a dielectric coated
conductor shielded by a fiite number of urdrtfrectionai belicaf wires. A
roorhi equation fs derived arrd solved numerically for the propagation

eonstaots of botb the monofffar and bifiiar modes. Nurnericaf reardts are
also presented for the effective surface transfer impedance of the sfdeld
Tfds parameter is found to depenz in general, on tbe propagation eon-
Stmlt.

1. INTRODUCTION

T HE leaky feeder technique [1] is now used to provide

radio communication in mine tunnels [2]. Many types

of leaky coaxial cables are now available [3], and the

surf ace transfer impedance [4], [5] has been used to char-

acterize the mean electromagnetic properties of braided

cable shields. This description has been useful in analyz-

ing propagation along a leaky coaxial cable in a mine

tunnel [6]. Such analyses predict the existence of two

dominant modes that seem to explain the basic propaga-

tion mechanisms quite successfully [7]. The bifilar mode

carries most of its energy inside the cable with leakage

outside, while the monofilar mode carries most of its

energy outside the cable with leakage to the inside of the

shield,

Although the surface transfer impedance description

and the resultant pair of propagation modes have been

useful in describing leaky feeder propagation, the validity

and generality of the concept are not well established.

Thus it is desirable to perform a boundary value analysis

for a specific leaky cable model to test the surface transfer

impedance concept. The model we choose consists of a

dielectric coated conductor which is shielded by a finite

number of unidirectional helices. The transmission-line

properties of such a structure have been derived by Casey

[8] for the special case where the cable dielectric constant

is that of free space. Also, Wait [9] has formulated the

case of counterwound helices with an arbitrary dielectric

constant for the insulation. Such a structure is an excellent

model for a braided coaxial cable, but leads to an infinite

system of linear equations; this requires a solution by

truncation and numerical inversion. Consequently
numerical results have yet to be obtained. Our simpler

model of unidirectional helices requires no matrix inver-

sion, but still exhibits the basic features of a leaky cable.
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Fig. L Perspective view of Q unidirectional heliees and planar devel-
opment of the cylindrical surface (drawn for Q= 2). The helieal wires
have radius c.

Also, it is a good model for the less common helical leaky

cable which has actually been constructed and tested [10].

11, FORMULATION

The geometry of the cable model is shown in Fig, 1.

The center conductor of radius a is perfectly conducting,

and the insulation of perrnittivity c occupies the region

a < p <pm The external region is free space with permittiv-

ity co, and the entire region external to the center conduc-

tor and the shield wires has magnetic permeability pW The

shield consists of Q equally spaced thin-wire helices, all

with the same pitch angle ~. The helices are defined by

the equation

@=(z/pO)tan++2fiq/Q (1)

where q= 0,1, ”””, Q–1.

The helical wires of radius c are taken to be perfectly

conducting for simplicity, but finite wire conductivity

could be included by applying an impedance condition at

the wires [9].

The model is the same as that of Wait [9] with the

countewound helices removed, and we follow his deriva-

tion and notation fairly closely. The time dependence is

exp (iut), and each helix is assumed to carry a current

10exp ( – i&z) where & is the mean propagation constant

in the z direction. The assumption of identical current in
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each helix is a result of t$-symmetric excitation. The corn- and

ponents of the surface cu~ent density in the cylindrical
II: = l?:z:(anp) (13)

surface p= POare
where

i(C#JjZ)= ~oexp ( - &z)
%q~:+-$”~ )

ZJ(U.P) = In(wnp) – [ lj(z4na)/K~(unu) ] Kn(UnP).

(2)
and

JO(W) = Ioexp ( – &z)
y~;+-$”w

(3)

where P( = 2rpo cot ~) is the axial period. By using the

spectral form of the delta function and performing the q

summation analytically [9], the surface current density can

be written

Q1osin’J’~ exp(- i&z)exP(in+) (5)
j+(fhz) = 2fip0 ~

.-*
n-IQ

where &= /?O+ (2nn~p).

The vector fields E and ~ can be expressed in terms of
electric and magnetic Her@ vectors with ordy z compo-

nents, II and II*. Thus

i= – ia~V X (211*) + (k2+ VV .)(.211) (6)

and

Z= i6xV X (211) + (k2V + V “)(zII*) (7)

where k= a( ~C)li2 is the wavenumber in the region a <p

< pw In the region p> PO, we replace c by COand k by

k.= co(WCO)1J2.From the forms in (4) and (5), we write

II= ,-~m IInexp(- i/3nz)exp(in@) (8)

n=lQ

and

m

II* = ~ II: exp( – i/3.z) exp (in+). (9)
1=-CO
n-IQ

The appropriate solutions in the region p> POare

% ‘A. K.(onP) (lo)

and

n; =A:Kn(unp) (11)

where v“ =( P: – k~)1t2, K. is the modified Bessel function

of the second kind of order n, and An and A; are con-
stants to be determined. In the region a < p <PO, the

appropriate forms are

IIn = Bnzn(unp) (12)

where

1. is the modified Bessel function of the first kind, u.=

( /3~ – k2)1t2, and B. and B; are constants to be de-

termined.

The boundary conditions at the shield are that the

tangential electric fields are continuous and that the

tangential magnetic fields are discontinuous by the

amount of the surface current. That is,

~z(P;) = Ez(Pl) (14)

Hz(P;) = Hz(g$) +jO(@7z) (15)

~*(Pi) = ~+(PJ) (16)

~&-) = H+(P;) –j=(@,Z). (17)

Simultaneous solution of (14)–(17) leads to the following

expressions for the coefficients A., B., A:, and B; [9]

A.=
[(

o z*’
---K-K’

)(

n~
iu~v —Sin+-cos+

Uzpo )

n/3

()

iwpmo Z+f
–ZK$–l 1QIO

— —sin+ —
z* 29TpoD

(18)
u

[(

A*= k% Z*’ c ~ ‘z~.— —.—
n

)

K–K’ Sill~
n Z* 60UZ

( -sin’-cOs’):K($ -l)]*

n/3—

Uzpo

(19)

B.= A#2K/(u2Z) (20)

( QIO

‘:= ‘2m* – 2wpo–)/ (U2Z) (21)

where

[

22 VZ*’
D= kOv ;FK– K’ 1[‘z~K–K’

Couz 1

Also for convenience we have written u= Uti, v = Vn, Z=

ZJUnPo), Z’= Z~(ti.po), Z*= Z;(unpo), Z*’= Z:’(unpJ K
= KJvnpo), K’= K’(vnpo), and P = &

The tangential electric fields in the external region,

p> Po, are given by

Zn(unp) = In(unp) – [~n(~n~)/~n(~na)]Kn(unp) “exp (in+) exp ( – i~.z) (22)
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and

EZ = – ~ o#nK~(o#) exp (in+) exp ( – i~nz).

1=–cc
~=[Q

(23)

AW and A; can be expressed directly in terms of the

helix current 10

A.= PJO

and

A:= f’;IO (24)

where P. and P: are defined by (18) and (19).

111. &PLICATION OF THE THIN-WIRE CONDITION

Since the shield wires are assumed to be very thin, the

lon@tudinal electric field is essentially tmiforrn around

the wire circumference. Thus the boundary condition that

the tangential electric field is zero on the shield wires can

be applied to any convenient point on the wires. Also, due

to the symmetry, it is sufficient to apply the condition at

only one of the Q wires. Wait [9] and Casey [8] chose to

apply the condition at the top of the q = O wire whi~h is

defined by the spiral z== (p/27r)G + c/sin#, p = P@ Ffow-

ever, convergence of the numerical solution is better if the

bounda~ condition is applied on the outside of q= O wire

which k defined by the spiral z = (p/27r)@, p = PO -t- c. Thus

we use this boundary condition which is written

Ezcos~+ E+sint)+E~coStJ=O (25)

where E; is the axial component of the primary field. It is

the field which would exist at the surface p= PO-1-c for the

same cylindrical structure in the absence of the shield

wires. The actual expression for E: is not required here,

but it has been derived for the case of plane wave excita-

tion by Wait [9].

By substituting (22)–(24) ino (25), the thin-wire

boundary condition becomes

f2~0 2 ~n+- E;cos$=o (26)
I=–ccl

Q~=1

where

(
l?.= –v:cos@l-

)
~ sin+ PnKn[fln(Po+ ~)]
po+c

+ iUNO~,,sint)P~K~ [ On(PO+ c)]. (27)

Thus 10 is now known if E: is specified. The result in (26)

can be shown to agree quite closely with that of Casey for

the special case of c = co, although the notation is some-

what different. The reason for choosing the match point

on the outside of the wire can be seen by examining the

convergence of the n summation in (26). By employing the

uniform asymptotic expressions for the modified Bessel

function [11] in (27), R. can be shown to decay exponen-

tially for large n:

~-b(n) exp( – ncsin+tan$/po) (28)

where b(n) is an algebraic function of n. This exponential

decay speeds the convergence of the n summation in (26)

which in general must be evaluated numerically. When
the match point is taken on the tops of the wire [8], [9], R.

has only an algebraic decay for large n. However, Latham

[12] has performed the required summation analytically

for some special cases.

N. MomLw l@JATION

The modal equation, obtained by setting the primary

field equal to zero in (26), is

(29)
i==-m
n=iQ

where & is given by (27). In general, (29) must be solved

numerically for the unknown propagation constant Po, but

there are some special cases where the mode equation

simplifies considerably.

We consider first the special case c = co. If, in addition,

the relevant cable dimensions are electrically small (kOpo

and kOp CK1), the following approximate solution for f10 is

obtained:

[

ln(po/a) + tan2+

&=

[(1-;)/2-2s2] 1’2

k. In(pO/a) +2SI

1
(30)

where

and

K[ntan+(l+;)](32)

The result in (30) is in close agreement with the propaga-

tion constant obtained from Casey’s [8] solution, although

he does not specifically deal with the modal equation. The

value of PO obtained from (30) is real and greater than k&

This is the type of slow-wave solution which is to be

expected with such a helical structure [13]. If the number

of wires Q becomes large, then 5’1 and S2 become small

and a remarkably simple expression for PO results:

()I
1 – < tan2$ 1’2

1%= ~+ ~~

k. 21n (pO/a) “
(33)

Here we note that, ‘as ~ tends to zero, &/kO approaches

one and we have the expected TEM transmission-line

mode. On the other hand, as # increases, Po/ k. becomes
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greater than one and the mode is progressively slowed

down.

For c >%, the mode equation is more complicated.

However, for Q large and /cpOand kp small, a solution of

the following form is found

()1– ~ tan+ “2

~= & ‘/2 ~+ ‘0

()[k“ – c“

I

21n(po/a) “
(34)

For + approaching zero, ~o/ko approaches (e/eO)lj2 and

we clearly have the bifilar mode. For increasing ~ this

mode also becomes slower. Another mode is also found

numerically in the vicinity /30/ko = 1, but we could find no

analytical solution. This mode is clearly the monofilar

mode which has the character of a Goubau wave since no

return current path is available for the cable in free space.

V, SURFACE TRANSFER IMPEDANCE

The surface transfer impedance ZT is defined as the

ratio of averaged axial electric field at the shield divided

by the averaged axial shield current (proportional to the

discontinuity in H+)
—
J%=poZT= — (35)

%O[%P=PJ – ~+lp=p; 1“
The bar indicates that the averaging is carried out over z

(from O to p) and @(from O to 2w). When this averaging is

carried out, only the n = O harmonics remain and Z~ is

given by

the dependence of Z~ on PO because (38) and (39) are

only valid for those values of PO where the modal equation

is satisfied.

In order to gain some insight into the dependence of Z=

on pitch angle +, we can examine the case for large Q. If

the solution of PO in (33) is substituted into (39), then Z~

becomes

(40)

Note that as $ increases from O to 7T/2, lZ~l increases

from zero to infinity. Thus the cable becomes more leaky

as # is increased. The optical coverage C of the shield is

simply given by

(41)

From (40) and (41), we see that as ~ increases, the optical
coverage increases, but the cable becomes more leaky

(larger z~). ~k points Up the well-~own fact that opti-

cal coverage is not a good measure of cable shielding for

most cables [14].

In many cases the surface transfer impedance is positive

imaginary and proportional to frequency. This has lead to

the following definition for surface transfer inductance

[4]:

L== ZT/(Z’W). (42)

For this special result given in (40), this definition yields a

positive real value of LT which is independent of

% – 440KO(WO)
z~=

{[

L2(~o~) ,
i@27rp~ CUOBOI:(u”PO) – — Ko(u@o)

Ko( UOa) 1–cov~oK:(v(po)

)<

(36)

For the usual case where u~o and o~o are small, the

small argument approximations for the modified Bessel

functions can be used to simplify (36)

E;+ o%oln (OOPO)z== (37)
i02r[ C#o– eBO/ ln(uoa) ] “

For the special case where the modal equation (29) is

satisfied, we can set E: equal to zero. If we also substitute

(20) into (37), Z~ simplifies to

For the further special case of c= CO,(38) simplifies to

()itiuOln (pO/a) B:
ZT= ~= —–1 . (39)

k;

This form agrees exactly with Casey’s result [8] for the

case where the modal equation is satisfied. It should be

stressed that (38) and (39) cannot be used to determine

frequency. For the more general result of (36), LT will

actually depend on both the frequency and the propaga-

tion constant.

VI. NUMERICAL RESULTS

A computer program was written to solve the general

modal equation (29). Since the structure is lossless for t

real, we are interested in real values of P. greater than k.

such that the fields decay for large p. The bisection

method [15] was used to solve (29), and Z= was calculated

using the general expression in (36).

All results were computed for the following parameters:

a=l.5 mm, po=10 mm, and c =0.5 mm. In Figs. 2–5, we

show results for the special case c = co, and here only one
mode was found.

In Fig. 2, the propagation constant P. is shown for
various values of Q as a function of pitch angle ~ for a

frequency of 10 MHz. As expected, PO approaches k. for

small ~, and PO decreases as the number of shield wires Q

is increased. The dashed curve for large Q is obtained
from (33). In Fig. 3, the surface transfer inductance,
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Fig. 2, Relative propagation constant /3./ fco as a function of pitch

angle $ for an sir-filled cable at a frequency of 10 MHz.
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Fig, 3. Surface transfer inductance as a function of pitch angle.

L~ = Z=/(i@) (in nanohenrys/rneter), is also shown as a

function of*.

The frequency dependence of the propagation constant

is shown in Fig. 4 for ~ = 30°. For sufficiently low

frequencies, &Jko is essentially independent of frequency

as predicted by the approximate result in (30), but this

idealization gradually fails as the frequency is increased.

A similar effect is observed for the transfer inductance in

Fig. 5.
In Figs. 6–9, results are shown for the case of a dielec-

tric insulation, where e/CO =2.5. The propagation constant

of the bifilar mode is shown in Fig. 6, and go =k for small

~ and large Q as expected. The propagation constant of

the monofilar mode is shown in Fig. 7, and& approaches

kO for small ~ and large Q.

The surface transfer impedance for the bifilar mode is

showrt in Fig. 8. Z= is pure imaginary, but the imaginary

part is actually negative for small values of ~. In such

cases, a surface transfer inductance is obviously not an

adequate characterization of the shield. The surface trans-
fer impedance for the monofilar mode is shown in Fig. 9,

and there are substantial differences from the bifilar mode

results of Fig, 8. Such differences are to be expected since

I 20 I , , ( I

6/6. .1
!

“’L=---’+

1 Large Q Approlmatmn
I 04

i
[ +=30” i,oo~
10 300 1000

FREQUENCY (MHz)

Fig. 4. Relative propagation constant as a function of frequency for an
air-filled cable.

40

k

Large Q Approx$mot!on

i

io~
10 30 100 300 000

FREQUENCY (MHz)

Fig. 5. Surface transfer inductance as a function of frequency for an
air-filled cable.

Z~ is known to depend on the propagation constant flo

[8], [16].

VII. CONCLUDING REMARKS

An idealized leaky coaxial cable has been modelled by

a dielectric coated conductor shielded by a finite number

of unidirectional helical wires, The rigorous modal equa-

tion was solved numerically for propagation constants of

the bifilar and monofilar modes. As expected, the propa-

gation constant of the bifilar mode is close to the wave

number of the insulation, and the propagation constant of

the monofilar mode is slightly greater than that of free

space. Since there is no return current path for the iso-
lated cable in free space, the monofilar mode takes on the

character of a Goubau mode. For the special case of an

air-filled cable, only one propagation mode is found.

The surface transfer impedance has been calculated and

is generally found to increase as the pitch angle of the

shield wires is increased. The optical coverage (or relative

metal area) also increases as the pitch angle increases; this

is not a good measure of cable shielding. The surface

transfer impedance cannot be represented simply by a

transfer inductance which is independent of frequency

and propagation constant.

A useful extension to this work would be a numerical

study of the counterwound helical model formulated by
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Fig. 6. Relative propagation constant of the bifilar mode of a dielec-
tric-filled cable as a function of pitch angle.

I 07 I 1 1 I [ 1
MONOFILAR MODE

106 -- G/c. =2,5 Q=l

f = 10 MHz

1.05 –

%
I 04 -

F
1,03-

1.02 – Q=4

Lol

t’ i
,ww-

3&4@ KP6@ 700

+

Fig. 7. Relative propagation constant of the monofilar mode of a
dielectrbfilled cable as a function of pitch angle.

Wait [9]. This would be useful in assessing the properties

of braided coaxial cables and would provide further in-

sight into the validity of the surface transfer impedance

concept. Also, the presence of nearby conductors or inter-

faces could affect the propagating modes. The character

of the monofilar mode is particularly sensitive to the

separation between the cable and a nearby interface
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