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Propagation Along a Coaxial Cable
with a Helical Shield

DAVID A. HILL, SENIOR MEMBER, IEEE, AND JAMES R. WAIT, FELLOW, IEEE

Abstraci—A leaky coaxial cable is modelled by a dielectric coated
conductor shielded by a finite number of unidirectional helical wires. A
modal equstion is derived and solved numerically for the propagation
constants of both the monofilar and bifilar modes. Numerical results are
also presented for the effective surface transfer impedance of the shield.
This parameter is found to depend, in general, on the propagation con-
stant.

I. INTRODUCTION

HE leaky feeder technique [1] is now used to provide

radio communication in mine tunnels [2]. Many types
of leaky coaxial cables are now available [3], and the
surface transfer impedance [4],[S] has been used to char-
acterize the mean electromagnetic properties of braided
cable shields. This description has been useful in analyz-
ing propagation along a leaky coaxial cable in a mine
tunnel [6]. Such analyses predict the existence of two
dominant modes that seem to explain the basic propaga-
tion mechanisms quite successfully [7]. The bifilar mode
carries most of its energy inside the cable with leakage
outside, while the monofilar mode carries most of its
energy outside the cable with leakage to the inside of the
shield.

Although the surface transfer impedance description
and the resultant pair of propagation modes have been
useful in describing leaky feeder propagation, the validity
and generality of the concept are not well established.
Thus it is desirable to perform a boundary value analysis
for a specific leaky cable model to test the surface transfer
impedance concept. The model we choose consists of a
dielectric coated conductor which is shielded by a finite
number of unidirectional helices. The transmission-line
properties of such a structure have been derived by Casey
[8] for the special case where the cable dielectric constant
is that of free space. Also, Wait [9] has formulated the
case of counterwound helices with an arbitrary dielectric
constant for the insulation. Such a structure is an excellent
model for a braided coaxial cable, but leads to an infinite
system of linear equations; this requires a solution by
truncation and numerical inversion. Consequently
numerical results have yet to be obtained. Our simpler
model of unidirectional helices requires no matrix inver-
sion, but still exhibits the basic features of a leaky cable.
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Fig. 1. Perspective view of Q unidirectional helices and planar devel-
opment of the cylindrical surface (drawn for Q =2). The helical wires
have radius c.

Also, it is a good model for the less common helical leaky
cable which has actually been constructed and tested [10].

II. FORMULATION

The geometry of the cable model is shown in Fig. 1.
The center conductor of radius a is perfectly conducting,
and the insulation of permittivity ¢ occupies the region
a< p< p,. The external region is free space with permittiv-
ity €, and the entire region external to the center conduc-
tor and the shield wires has magnetic permeability u, The
shield consists of Q equally spaced thin-wire helices, all
with the same pitch angle y. The helices are defined by
the equation

o=(z/py)tany +2mq/Q (1)
where ¢=0,1,---,0—1.

The helical wires of radius ¢ are taken to be perfectly
conducting for simplicity, but finite wire conductivity
could be included by applying an impedance condition at
the wires [9].

The model is the same as that of Wait [9] with the
counterwound helices removed, and we follow his deriva-
tion and notation fairly closely. The time dependence is
exp(iwf), and each helix is assumed to carry a current
Iexp(—iByz) where B, is the mean propagation constant
in the z direction. The assumption of identical current in
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each helix is a result of ¢-symmetric excitation. The com-
ponents of the surface current density in the cylindrical
surface p=p, are

. cosy &5 2mz_ 2mg
1(8,2) = Loexp (= ifoe) 22 Eo ( : Q)
2
and ()
 (6,2) = Lexp(—ifz) 0 5 of o 272 _ 27q
o=l (~iB) L S s(¢ ” Q)
3)

where p(=2mp,coty) is the axial period. By using the
spectral form of the delta function and performing the ¢
summation analytically [9), the surface current density can
be written

I o0
i) =B 3 exp(=if,2)expling) (&
4
and
I 0
56.0=FE 3 ep(-igeniing) ()
(1] 1::105
where 8, = ,Bo+(27m/p)

The vector fields E and H can be expressed in terms of
electric and magnetic Hertz vectors with only z compo-
nents, IT and IT*. Thus

E=—iwugV X (3I1*) + (k4 VV - )(2II) (©6)
and
H=iweV X (FII) + (k2V + V . )(zIT*) (7

where k= w( yy€)'/? is the wavenumber in the region a <p
<po- In the region p>p, we replace € by ¢, and k by
ko=w( pty€5)"/2. From the forms in (4) and (5), we write

S 1L exp(~ iB,2) exp(ing)

(3
Iwm — o0
ne=JQ
and
[o.2]
2 IIexp(—iB,z)exp(ing). ©®
g
The appropriate solutions in the region p >p, are
IL,= 4,K,(0,0) (10)
and
I3 = A4} K, (v,p) (11)

where v, = (82— k2)'/?, K, is the modified Bessel function
of the second kind of order n, and 4, and 4} are con-
stants to be determined. In the region a<p<p, the
appropriate forms are

where

Z,(u,p) = 1(u,p) — [ I(1,0) / K, {u,a) | K, (4,0)
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and

I3 = BXZ}(u,p) (13)

where
Z:(unp) = In(unp) - [Ir:(una)/Kl:(una) ] Kn(unp)'

I, is the modified Bessel function of the first kind, u,=
(B2-k%»"? and B, and B} are constants to be de-
termined.

The boundary conditions at the shield are that the
tangential electric fields are continuous and that the
tangential magnetic fields are discontinuous by the
amount of the surface current. That is,

E,(05)=E,(p3) (14)
H,(pg )=H,(pg ) +Jj4(¢:2) (15)
¢(Po )=E¢(Po ) (16)
Hy(pg )= Hy(p3 ) —Jj($:2). (17)

Simultaneous solution of (14)—(17) leads to the following
expressions for the coefficients 4,, B,, A¥, and B} [9]

A, =

lwp,ou(v g: K- K')(-——E—sm\p cos#x)

u’p,
2 iwpmg 7 7,
Po u? u Zz* 27p,D

k2o Z+
n Z*

(18)

i—(Z—Z—-K K’)sm;[/

g u Z
2
Z’.@K(P__l)
Po u?

Ql,
27p,D

(19)
(20)

@n

- ( —%B— siny — cos ¢)
u

Po

B,=A,0’K/(4*Z)
B*"'( KA* — QIO )/(uZZ)

2mpg
_.K»”il’__Z_K K/]
g u Z

() (5
Po u?

Also for convenience we have written u=u,, v=v,, Z=
Z,(tpo)s Z'=Z}(Uyp), Z*=Z2(tpe), Z*' = Z2 (u,00), K
=K, (v,p9), K= K'(v,p0), and B=p,.

The tangential electric fields in the external region,
p > p,, are given by

o0
E,= X
{m= — o0

n=lQ

v, A7 Ki(o,p) + 22 4 K(np)]

-exp (inp) exp(—iB,z) (22)
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and

o0
E=- 3

=—

n=1Q

034, K, (v,p) exp (ing) exp (— iB,z).

(23)

A, and A} can be expressed directly in terms of the
helix current

An = PnIO
and
Ay =Prl, (24

where P, and P} are defined by (18) and (19).

1.

Since the shield wires are assumed to be very thin, the
longitudinal electric field is essentially uniform around
the wire circumference. Thus the boundary condition that
the tangential electric field is zero on the shield wires can
be applied to any convenient point on the wires. Also, due
to the symmetry, it is sufficient to apply the condition at
only one of the @ wires. Wait [9] and Casey [8] chose to
apply the condition at the top of the g=0 wire which is
defined by the spiral z=(p/27)¢+ c/siny,p=p, How-
ever, convergence of the numerical solution is better if the
boundary condition is applied on the outside of g=0 wire
which is defined by the spiral z=(p/2m)¢, p=p,y+ c. Thus
we use this boundary condition which is written

E,cosy+ E,siny + EF cosy=0

APPLICATION OF THE THIN-WIRE CONDITION

(25)

where E? is the axial component of the primary field. It is
the field which would exist at the surface p=p,y+ c for the
same cylindrical structure in the absence of the shield
wires. The actual expression for E? is not required here,
but it has been derived for the case of plane wave excita-
tion by Wait [9].

By substituting (22)-(24) ino (25), the thin-wire
boundary condition becomes

o0
Ql, > R,+EFcosy=0
=~

n=IgQ

(26)

where

= 2 L
R -—(-v,, cosy + P s1nxp)PnKn[v,,(po+ )]

i

+ iwpgy, siny P K[ v,(0p+ ). (27)

Thus /, is now known if E? is specified. The result in (26)
can be shown to agree quite closely with that of Casey for
the special case of e=¢,, although the notation is some-
what different. The reason for choosing the match point
on the outside of the wire can be seen by examining the
convergence of the n summation in (26). By employing the
uniform asymptotic expressions for the modified Bessel
function [11] in (27), R, can be shown to decay exponen-
tially for large »:

R, ~b(n)exp(— ncsiny tany/py) (28)
where b(n) is an algebraic function of n. This exponential

decay speeds the convergence of the » surnmation in (26)
which in general must be evaluated numerically. When
the match point is taken on the tops of the wire [8],[9}, R,
has only an algebraic decay for large n. However, Latham
[12] has performed the required summation analytically
for some special cases.

IV. MopaL EQUATION

The modal equation, obtained by setting the primary
field equal to zero in (26), is
0
2 R,=0

I=—o00
n=10Q

(29)

where R, is given by (27). In general, (29) must be solved
numerically for the unknown propagation constant 8, but
there are some special cases where the mode equation
simplifies considerably.

We consider first the special case e=¢,. If, in addition,
the relevant cable dimensions are electrically small (k00
and k,p<1), the following approximate solution for By is
obtained:

1/2
In(py/a)+ tanlez[(l - g;)/Z—ZSZ}
B Py
ko In(py/a)+2S,;
(30)
where
e I (ntanya/py)
S)= ‘%‘Q [In(ntan¢)+ K (ntanya/py) K,,(ntam[/)}
-Kn[ntanz{/(l+p£” (31)
(o]
and
_ N | I(ntanga/po)
§y= I_%IQ [In(’”an\P)*‘ K (nianya,/pg) K,,(ntanz,b)}

~K,,’[ntanxlx(l+;)%)}. (32)

The result in (30) is in close agreement with the propaga-
tion constant obtained from Casey’s [8] solution, although
he does not specifically deal with the modal equation. The
value of B, obtained from (30) is real and greater than k.
This is the type of slow-wave solution which is to be
expected with such a helical structure [13]. If the number
of wires Q becomes large, then S, and S, become small
and a remarkably simple expression for 8, results:

2
(l—a—z)tanlez 2
o
L0 PR S TA—

= 33
ko 21n(py/ @) (33)
Here we note that, as ¢ tends to zero, B,/ k, approaches
one and we have the expected TEM transmission-line
mode. On the other hand, as ¥ increases, 8,/ k, becomes
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greater than one and the mode is progressively slowed
down.

For €>¢, the mode equation is more complicated.
However, for Q large and kp, and kp small, a solution of
the following form is found

2
(1—-%—)tan¢ 2

1/2 [
ko €

21n(po/a)
For y approaching zero, 8,/k, approaches (e/¢,)'/? and
we clearly have the bifilar mode. For increasing i this
mode also becomes slower. Another mode is also found
numerically in the vicinity 8,/ k,= 1, but we could find no
analytical solution. This mode is clearly the monofilar
mode which has the character of a Goubau wave since no
return current path is available for the cable in free space.

(34)

V. SURFACE TRANSFER IMPEDANCE

The surface transfer impedance Z; is defined as the
ratio of averaged axial electric field at the shield divided
by the averaged axial shield current (proportional to the
discontinuity in H,)

Zp= — E‘l"=”°__ ) (35)
2WPO[H¢|p=pb*_H¢|p=P<?]

The bar indicates that the averaging is carried out over z
(from 0 to p) and ¢ (from O to 27). When this averaging is
carried out, only the n=0 harmonics remain and Zr is
given by

E? — v5A Ko vopo)

Z=
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the dependence of Z, on B, because (38) and (39) are
only valid for those values of 8, where the modal equation
is satisfied.

In order to gain some insight into the dependence of Z;
on pitch angle ¢, we can examine the case for large Q. If
the solution of B, in (33) is substituted into (39), then Z;
becomes

7 2
Zp= e (1 - a_) tan’y. (40)

4 I

Note that as ¢ increases from 0 to #/2, |Z,| increases
from zero to infinity. Thus the cable becomes more leaky
as ¢ is increased. The optical coverage C of the shield is
simply given by

-

"~ @pycosy

(41)

From (40) and (41), we see that as ¥ increases, the optical
coverage increases, but the cable becomes more leaky
(larger Z,). This points up the well-known fact that opti-
cal coverage is not a good measure of cable shielding for
most cables [14].

In many cases the surface transfer impedance is positive
imaginary and proportional to frequency. This has lead to
the following definition for surface transfer inductance

(41:
Ly=2./(iw).

For this special result given in (40), this definition yields a
positive real value of L, which is independent of

(42)

(36)

I Uya)

For the usual case where ugp, and vy, are small, the
small argument approximations for the modified Bessel
functions can be used to simplify (36)

E? + v3doIn (vg00)
iw2n] epdg— €Bo/ In(uga)]
For the special case where the modal equation (29) is
satisfied, we can set E? equal to zero. If we also substitute
(20) into (37), Z; simplifies to

05 In (0500)
v51n (voPo)
uiln(p,/a)
For the further special case of e=¢,, (38) simplifies to

iougln (po/a) [ B&

Z2,=—————=| = 1}
27 K2

This form agrees exactly with Casey’s result [8] for the

case where the modal equation is satisfied. It should be
stressed that (38) and (39) cannot be used to determine

W

A (37)

Zp=

(38)
iw2w[ €€

(39)

inWpO( €“oBo[ 1g(ugpo) ~ Ko(Uoa) Ky “oPo)] — €g0oAoK(voP0) }

frequency. For the more general result of (36), L, will
actually depend on both the frequency and the propaga-
tion constant.

VL

A computer program was written to solve the general
modal equation (29). Since the structure is lossless for €
real, we are interested in real values of B, greater than k,
such that the fields decay for large p. The bisection
method [15] was used to solve (29), and Z;. was calculated
using the general expression in (36).

All results were computed for the following parameters:
a=15 mm, p,=10 mm, and ¢=0.5 mm. In Figs. 2-5, we
show results for the special case €= ¢y, and here only one
mode was found.

In Fig. 2, the propagation constant B, is shown for
various values of Q as a function of pitch angle y for a
frequency of 10 MHz. As expected, B, approaches k, for
small ¢, and B, decreases as the number of shield wires @
is increased. The dashed curve for large Q is obtained
from (33). In Fig. 3, the surface transfer inductance,

NUMERICAL RESULTS
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Fig. 2. Relative propagation constant B,/k, as a function of pitch
angle ¢ for an air-filled cable at a frequency of 10 MHz.
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Fig. 3. Surface transfer inductance as a function of pitch angle.

Ly=2Z,/(iw) (in nanohenrys/meter), is also shown as a
function of y.

The frequency dependence of the propagation constant
is shown in Fig. 4 for ¢=30°. For sufficiently low
frequencies, B,/ k, is essentially independent of frequency
as predicted by the approximate result in (30), but this
idealization gradually fails as the frequency is increased.
A similar effect is observed for the transfer inductance in
Fig. 5.

In Figs. 6-9, results are shown for the case of a dielec-
tric insulation, where ¢/¢,=2.5. The propagation constant
of the bifilar mode is shown in Fig. 6, and By=k for small
Y and large Q as expected. The propagation constant of
the monofilar mode is shown in Fig. 7, and B, approaches
kg for small ¢ and large Q.

The surface transfer impedance for the bifilar mode is
shown in Fig. 8. Z, is pure imaginary, but the imaginary
part is actually negative for small values of ¢. In such
cases, a surface transfer inductance is obviously not an
adequate characterization of the shield. The surface irans-
fer impedance for the monofilar mode is shown in Fig. 9,
and there are substantial differences from the bifilar mode
results of Fig. 8. Such differences are to be expected since

120
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L e/€ps] 1

116}
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Large Q Approimahon
104 fem === = e — =3
o Y =30° B
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FREQUENCY (MHz)

Fig. 4. Relative propagation constant as a function of frequency for an
air-filled cable.
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Fig. 5. Surface transfer inductance as a function of frequency for an
air-filled cable.

Z; is known to depend on the propagation constant 8,
[8],[16].

VIL

An idealized leaky coaxial cable has been modelled by
a dielectric coated conductor shielded by a finite number
of unidirectional helical wires. The rigorous modal equa-
tion was solved numerically for propagation constants of
the bifilar and monofilar modes. As expected, the propa-
gation constant of the bifilar mode is close to the wave
number of the insulation, and the propagation constant of
the monofilar mode is slightly greater than that of free
space. Since there is no return current path for the iso-
lated cable in free space, the monofilar mode takes on the
character of a Goubau mode. For the special case of an
air-filled cable, only one propagation mode is found.

The surface transfer impedance has been calculated and
is generally found to increase as the pitch angle of the
shield wires is increased. The optical coverage (or relative
metal area) also increases as the pitch angle increases; this
is not a good measure of cable shielding. The surface
transfer impedance cannot be represented simply by a
transfer inductance which is independent of frequency
and propagation constant.

A useful extension to this work would be a numerical
study of the counterwound helical model formulated by

CoNCLUDING REMARKS
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Fig. 6. Relative propagation constant of the bifilar mode of a dielec-
tric-filled cable as a function of pitch angle.

107 T T T T T T
MONOFILAR MODE
106 € /€, =25 Q=1
f=10 MHz
1051
104
B
K,
103
.02
101}~ ]
100! L 1 [ ! 1 t
o 0° 20 30° 40° 50° 60° TO°

¥

Fig. 7. Relative propagation constant of the monofilar mode of a
dielectric-filled cable as a function of pitch angle.

Wait [9]. This would be useful in assessing the properties
of braided coaxial cables and would provide further in-
sight into the validity of the surface transfer impedance
concept. Also, the presence of nearby conductors or inter-
faces could affect the propagating modes. The character
of the monofilar mode is particularly sensitive to the
separation between the cable and a nearby interface
[17],[18].
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